87 research outputs found

    Ferromagnetic resonance of a two-dimensional array of nanomagnets: Effects of surface anisotropy and dipolar interactions

    Full text link
    We develop an analytical approach for studying the FMR frequency shift due to dipolar interactions and surface effects in two-dimensional arrays of nanomagnets with (effective) uniaxial anisotropy along the magnetic field. For this we build a general formalism on the basis of perturbation theory that applies to dilute assemblies but which goes beyond the point-dipole approximation as it takes account of the size and shape of the nano-elements, in addition to their separation and spatial arrangement. The contribution to the frequency shift due to the shape and size of the nano-elements has been obtained in terms of their aspect ratio, their separation and the lattice geometry. We have also varied the size of the array itself and compared the results with a semi-analytical model and reached an agreement that improves as the size of the array increases. We find that the red-shift of the ferromagnetic resonance due to dipolar interactions decreases for smaller arrays. Surface effects may induce either a blue-shift or a red-shift of the FMR frequency, depending on the crystal and magnetic properties of the nano-elements themselves. In particular, some configurations of the nano-elements assemblies may lead to a full compensation between surface effects and dipole interactions.Comment: 14 pages, 5 figure

    Momentum dependent light scattering in insulating cuprates

    Full text link
    We investigate the problem of inelastic x-ray scattering in the spin1/2-{1/2} Heisenberg model on the square lattice. We first derive a momentum dependent scattering operator for the A1gA_{1g} and B1gB_{1g} polarization geometries. On the basis of a spin-wave analysis, including magnon-magnon interactions and exact-diagonalizations, we determine the qualitative shape of the spectra. We argue that our results may be relevant to help interpret inelastic x-ray scattering experiments in the antiferromagnetic phase of the cuprates.Comment: 5 pages, 3 figures, to appear in PR

    Interplay between surface anisotropy and dipolar interactions in an assembly of nanomagnets

    Get PDF
    We study the interplay between the effects of surface anisotropy and dipolar interactions in monodisperse assemblies of nanomagnets with oriented anisotropy. We derive asymptotic formulas for the assembly magnetization, taking into account temperature, applied field, core and surface anisotropy, and dipolar interparticle interactions. We find that the interplay between surface anisotropy and dipolar interactions is well described by the analytical expression of the assembly magnetization derived here: the overall sign of the product of the two parameters governing the surface and the dipolar contributions determines whether intrinsic and collective terms compete or have synergistic effects on the magnetization. This is illustrated by the magnetization curves of γ-Fe2O3 nanoparticle assemblies in the low concentration limit

    Equilibrium and dynamic behaviour of (weakly) interacting assemblies of magnetic nanoparticles

    Get PDF
    A still open issue related with the study of assemblies of magnetic nanoparticles, deposited on a substrate or embedded in a matrix, is that of the interplay between intrinsic features of the nanoparticles pertaining to their finite-size and boundary effects, and the collective effects entailed by their mutual interactions and their interactions with the hosting matrix or substrate. In this work we develop a semi-analytical approach that allows us to derive expressions for the magnetization and the susceptibility of interacting assemblies of single-domain ferromagnetic nanoparticles. We find that upon tuning the physical parameters pertaining to each nanoparticle or the shape of the assembly and its spatial arrangement, surface and inter-particle interactions may be set up to play additive or competitive roles leading to assemblies with optimal magnetic properties

    Systematic computation of crystal field multiplets for X-ray core spectroscopies

    Full text link
    We present a new approach to computing multiplets for core spectroscopies, whereby the crystal field is constructed explicitly from the positions and charges of surrounding atoms. The simplicity of the input allows the consideration of crystal fields of any symmetry, and in particular facilitates the study of spectroscopic effects arising from low symmetry environments. The interplay between polarization directions and crystal field can also be conveniently investigated. The determination of the multiplets proceeds from a Dirac density functional atomic calculation, followed by the exact diagonalization of the Coulomb, spin-orbit and crystal field interactions for the electrons in the open shells. The eigenstates are then used to simulate X-ray Absorption Spectroscopy and Resonant Inelastic X-ray Scattering spectra. In examples ranging from high symmetry down to low symmetry environment, comparisons with experiments are done with unadjusted model parameters as well as with semi-empirically optimized ones. Furthermore, predictions for the RIXS of low-temperature MnO and for Dy in a molecular complex are proposed.Comment: Accepted for publication in Phys. Rev.

    Spin configurations in hard-soft coupled bilayer systems: from rigid magnet to exchange spring transitions

    Full text link
    We investigate equilibrium properties of an exchange-spring magnetic system constituted of a soft layer (e.g. Fe) of a given thickness on top of a hard magnetic layer (e.g. FePt). The magnetization profile M(z) as a function of the atomic position ranging from the bottom of the hard layer to the top of the soft layer is obtained in two cases with regard to the hard layer: i) in the case of a rigid interface (the FePt layer is a single layer), the profile is obtained analytically as the exact solution of a sine-Gordon equation with Cauchy's boundary conditions. Additional numerical simulations also confirm this result. Asymptotic expressions of M(z) show a linear behavior near the bottom and the top of the soft layer. In addition, a critical value of the number of atomic planes in the soft layer, that is necessary for the onset of spin deviations, is obtained in terms of the anisotropy and exchange coupling between the adjacent plane in the soft layer. ii) in the case of a relaxed interface (the FePt layer is a multilayer), the magnetization profile is obtained numerically for various Fe and FePt films thicknesses and applied field.Comment: 10 pages, 9 figures, PRB submitted (12-07-2010

    High intensity linac driver for the SPIRAL-2 project : Design of superconducting 88 MHz quarter wave resonators (beta 0.12), power couplers and cryomodules

    No full text
    ACCInternational audienceA Superconducting Linac Driver, delivering deuterons with energy up to 40 MeV (5 mA) and heavy ions with energy of 14.5 MeV/u (1 mA ), is proposed for the Spiral-2 radioactive beams facility. For the high energy section of the linac, a superconducting 88 MHz Quarter Wave Resonator (beta 0.12) has been designed and the optimisation of RF and mechanical performances will be presented. Based on the present state-of-art of the Superconducting RF technology, maximum electric surface field of 40 MV/m and magnetic surface field of 80 mT, have been adopted which should allow to reach an accelerating field of 7 MV/m (energy gain 3 MeV per resonator). A first complete prototype is under construction. The high intensity deuteron beam specifications have imposed the design of an original power coupler (maximum power 20 KW). The RF, mechanical, and thermal characteristics will be presented. The design of the cryomodule for this high energy section, integrating two QWR with its associated equipments (couplers, tuners, helium tanks), will be presented

    Mean-field Study of Charge, Spin, and Orbital Orderings in Triangular-lattice Compounds ANiO2 (A=Na, Li, Ag)

    Full text link
    We present our theoretical results on the ground states in layered triangular-lattice compounds ANiO2 (A=Na, Li, Ag). To describe the interplay between charge, spin, orbital, and lattice degrees of freedom in these materials, we study a doubly-degenerate Hubbard model with electron-phonon couplings by the Hartree-Fock approximation combined with the adiabatic approximation. In a weakly-correlated region, we find a metallic state accompanied by \sqroot3x\sqroot3 charge ordering. On the other hand, we obtain an insulating phase with spin-ferro and orbital-ferro ordering in a wide range from intermediate to strong correlation. These phases share many characteristics with the low-temperature states of AgNiO2 and NaNiO2, respectively. The charge-ordered metallic phase is stabilized by a compromise between Coulomb repulsions and effective attractive interactions originating from the breathing-type electronphonon coupling as well as the Hund's-rule coupling. The spin-orbital-ordered insulating phase is stabilized by the cooperative effect of electron correlations and the Jahn-Teller coupling, while the Hund's-rule coupling also plays a role in the competition with other orbital-ordered phases. The results suggest a unified way of understanding a variety of low-temperature phases in ANiO2. We also discuss a keen competition among different spin-orbital-ordered phases in relation to a puzzling behavior observed in LiNiO2
    corecore